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Abstract. This work is addressed to a wide range of scientists who 

approach the research of the human brain from different points of view. Our 

main point is that no matter of the angle of approach in the brain research, a 

scientist has to be aware of the physical possibility of the brain functioning. We 

describe this possibility by modeling the brain as light. The essential physical 

property of this model is then fractality. It will be physically explained for the 

light itself and then applied as such to the brain. The main brain functions: the 

memory, acquiring information, and handling this information are then to be 

explained as scale transient fractal phenomena. This physical model is thereby 

useful in guiding any research on brain, no matter of its nature. 
 

Keywords: neuron; light ray; universe; luxon; Madelung fluid; theory of 

interpretation; theory of holographic memory. 

 
1. Introduction 

 

In order to build up a physical understanding of the way in which the 

brain operates, our task with the present work is twofold: first, to consider 
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critically what we can carry, from the fundamental physics at large, over to the 

specific physics of brain; secondly, with a proper selection thus done, to explain 

the basic functions of the brain, i.e. acquiring and handling the information and, 

more importantly, the memory. Useless to say, these two tasks are in fact 

heavily entangled with each other, so that our presentation follows them only as 

a general guidance: at any point of discourse we shall have in mind both the 

physics and the world of brain on equal footing. 

Up to this point in our life the physics can be categorized as the science 

describing what we can perceive outside ourselves, i.e. the material universe. 

Transposed over to the brain per se or, in fact, to the nervous system at large, 

this science has created that part of anatomy of the brain which defines it as 

structured matter: gray matter, white matter, neurons, axons, dendrites and such. 

But this means dead matter, for here we have to do with the matter accessible to 

our senses, either in a mediated way, or directly. Once we need to describe the 

operational brain, we have to define it as a universe, for there is no other 

possibility, physically speaking: any invasive intervention destroys the very 

object of our study, transforming it into dead matter. From this moment on the 

trouble starts brewing, once we realize that this is not a physical universe as we 

know it. For, in case of a physical universe, the task of describing it is a lot 

easier: we have pretty much at our disposal, by our senses, the structural 

formations of matter representing the constitutive parts of the universe – atoms, 

molecules, planetary system, galaxy, metagalaxy, etc. – together with some of 

their possible connections, and their space and time scales‟ dependence. Thus, 

we can physically explain the constitution of the universe as a whole made out 

of some parts, specific to the scale of the universe. This is not the case for the 

living brain: it is a universe that cannot be studied but only from outside on both 

the accounts of functionality and connectivity. So one of the fundamental 

problems of physics becomes critical here: how do we define a universe in 

general? What is essential in such a description, as we know it from physics that 

can be carried over in the description of any universe? We have an answer to 

this question, and this answer provides a criterion of definition of brain itself as 

a universe. This definition, in turn, provides criteria of choice of the physical 

principles involved in the physics of brain, and their adaptations to this physics. 

As a living universe, the brain produces and handles what we know 

physically – and even manage routinely, from a medical point of view – as 

electric and magnetic fields. Indeed, from a noninvasive point of view – the 

only way to preserve life during research – we have at our disposal for the study 

of brain two main methods, generated by the electrical nature of the brain 

activity. The first one – the electro-encephalography (EEG) – exploits the 

electrical activity of the brain, while the second – the magneto-encephalography 

(MEG) – exploits the magnetic activity of the brain. If we do not consider the 

magnetic field as „invasive‟, then the magnetic resonance imaging (MRI) and 

functional magnetic resonance imaging (fMRI) can also count as valid methods 
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of study under „noninvasive‟ description. The experience generated by these 

methods has long produced pertinent general conclusions about the universe we 

call brain. 

We can only infer that the electric and magnetic fields are involved in 

both the connectivity and the physical structure of the local neural populations, 

synchronized, as it were, in order to form structural constitutive units in the 

human brain. Concepts like „amount of synchrony‟, „coherence‟, „time series‟ 

and so on, currently used in brain research, have a precise physical meaning. 

There seems to be no doubt that the physics is involved here through 

electrodynamics. However, according to the orthodox view on this very part of 

physics, such an application would mean that the fields are always considered 

as a consequence of some motion, and the induction phenomenon is orderly in 

the brain. We challenge this idea in a specific way, with the hope that there is 

also something positive in „statics‟ rather than only in „kinematics‟, or even 

„dynamics‟: electro-statics and, above all, magneto-statics, properly handled, 

are liable to show a way to solution of functionality of the brain as a whole. We 

relate this statics to the concept of phase, and then attach to it the concepts listed 

above, and then some others to be presented here in due time. 

 
1.1. The Strategy of Approach 

 

The main point to be observed from the physics we have at our disposal 

thus far, is then its way to construct the image of the universe around us. The 

light, in any and all of its instances, is the essential element of this universe, 

allowing the explanation of its very structure. The light gives the connections in 

the universe, the light stores and transmits the information in the universe in the 

form of a memory, the light is the epitome of interactions between the 

fundamental structures of the universe. Most of these properties have been 

revealed based on the idea of confinement of light, experimentally realized long 

ago in the form of a Wien-Lummer enclosure, which made light into a 

thermodynamical system (Wien and Lummer, 1895). The research of this 

system was able to produce the quantum physics with all its consequences. 

Somewhere along this path, a fundamental property of light has been 

discovered: the invariance with respect to dimensions of the Wien-Lummer 

enclosure. This means that the light as a thermodynamical system has some 

special properties which are the same in microcosmos, at the scale of the 

laboratory, and in the universe at large, which thus becomes simply a Wien-

Lummer box of a particular dimension. 

The world of brain is naturally confined in such an enclosure: the skull. 

This is our starting point with the present research, but there is an essential 

difference with respect to the physical case of thermodynamic light that inspired 

us: there is no scale transition here. All skulls of human population have just 

about the same dimensions, so that the variation in dimensions can be only of a 
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statistical nature. The problem then becomes apparently simpler: describe those 

processes that are only statistically invariant, in order to present the 

connectivity of the brain from a physical point of view. Then we find that the 

essential statistically invariant description of light, which can be safely 

translated into brain is the concept of light ray. The theory of light itself started 

with this concept in the first place, but we shall show here that the physics of 

brain adds more to it along the idea of a fundamental physical structure. 

 
1.2. The Fundamental Constitutive Unit of Brain 

 

The description of living brain should start from the functionality of its 

fundamental anatomical unit: the neuron. This will be taken here as one or more 

tubes, known as dendrites in the anatomy of nervous system, attached to a 

soma, and this is the concept that epitomizes, in the case of brain world, what 

we know as a light ray in the regular universe. The problem, therefore, comes 

down to a proper statistical description of a light ray, and we shall concentrate 

on it right away, in order to be able to write down the required mathematics. 

This will allow us to carry over the mathematical, as well as the physical, 

notions into the world of brain, a world „synchronized‟, as it were, not by light 

rays as in the regular universe, but by their correspondents – the neurons. The 

concepts like memory, connection between neurons, and the structure of the 

electro-magnetic fields involved in the brain physics should then come out only 

naturally along this line, and we shall show here that they are coming indeed. 

 

2. The Physical Description of a Universe 

 

Rarely, if ever, is theoretical physics concerned with the definition of 

coordinates: the usual consensus is that the coordinates exist, they do have the 

meaning we happen to assign them, and the theoretical results can be expressed 

in such a way that, when it comes to verification, there is always a 

correspondence with the reality of things described by those coordinates. It is on 

this state of the case that the modern global positioning on Earth came to remind 

us that the special relativity, with all its particular requirements, actually 

represents a modality of defining the coordinates physically, by a condition of 

equivalence between them. This condition is always tacitly assumed in the 

classical cases, but never explicitly stated: the space coordinates are defined 

first and foremost by coordinate lines, along which we need to pinpoint some 

values uniquely corresponding to a position in space. However, for a holistic 

theory of the universe – of the kind we need to consider in order to describe the 

living brain – such a definition of the coordinates is not enough. 

First, the brain is confined to skull, and if it is that some analogy with 

the light, which defines the relativistic coordinate systems involved in the 

description of regular universe, one needs a description of radiation from 
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thermodynamical point of view, which involves an enclosure containing it. 

Then we need to choose that description of the thermal radiation which proved 

to be invariant to the changing in dimensions of the enclosure, and imposed the 

modern cosmology. Historically, such an addition to the reference frame was 

realized in the form of Wien-Lummer enclosure for radiation studies (Wien and 

Lummer, 1895). This device has had a crucial role in establishing the radiation 

laws, and their concordance with the observed properties of the radiation at 

large. That concordance, in the form of Wien‟s displacement law, contributed in 

establishing the quantum theory as a natural theory of light as we know it today. 

It is along this line of historical development of physics, that the 

theories of the light ray have been improved, until they reached the discovery of 

a new natural phenomenon, namely the holography, to be added to classical list 

of phenomena related to light: reflection, refraction and diffraction. The 

holography allows then a just as natural description of the concept of memory, a 

thesis whose main promoter was the renowned psychiatrist and neurosurgeon 

Karl Pribram. And the holographic theory of the brain is entirely based on the 

quantum theory, once it is based on the idea of a hologram (Pribram, 2007). 

Therefore, if we need to involve the physics in the study of brain, we need first 

and foremost a coordinate system adapted to the skull, as representing the 

enclosure of the universe called „brain‟. This enclosure is our reference frame. 

 
2.1. The Idea of Coordinate System in a Universe 

  

Let us start with the idea of coordinate system. In order to describe the 

spatial position in a certain reference frame, one always needs such a concept, 

usually connected to a particular geometry that offers the meaning of 

coordinates. This is the typical case in physics, and it even became cursory, to 

the point where sometimes the coordinates are only mentioned with no 

precaution of defining them in a way or another. The modern idea of global 

positioning came to impose a closer consideration of the concept of space 

position itself, in the definition of which the idea of light ray needs to be taken 

as a fundamental concept. As it happens, the skull correlations revealed in EEG 

and MEG (Pribram, 1998), seem to uncover the fact that such a concept of ray, 

is to be somehow connected to the neuron. We take this idea for granted based 

on the considerations that follow. 

 The best idea of definition of a system of coordinates, in our opinion, is 

that of Bartolomé Coll who aims at defining physically the coordinate lines, and 

actually builds a general natural philosophy, as it were, to be followed in such a 

construction in any universe (Coll, 1985). We shall apply Coll‟s philosophy, but 

only for the three-dimensional case. It is in order to make this philosophy 

amenable for the physics of brain, that we reproduce here three essential 

endnotes from the Coll‟s work just cited above. First comes the idea of lines of 

coordinates: 
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Typically, the definition domains of such systems correspond to 

world tubes obtained by evolution of space-like tetrahedral figures, over 

whose four faces, at every instant, light beams fall on (Coll, 1985, 

Endnote [6], our emphasis). 
 

In the present work we use „tetrahedral figures‟ in Euclidean reference 

frames where only one of the faces of tetrahedron is to be taken into 

consideration. This way eight tubes will be constructed for each and every 

reference frame. The structure of these light beam should be, and it is indeed, as 

„physical‟ as possible. For us it is the classical light ray, to be described in detail 

in due time, and completed with a physical interpretation due to Louis de 

Broglie (de Broglie, 1926b, c). The word „interpretation‟ is taken here in the 

precise meaning necessary for the construction of wave mechanics (Darwin, 

1927). We shall return to this in due time. Only, the de Broglie‟s „wave 

phenomenon called material point‟ gets here baptized by Bartolomé Coll as 

„luxon‟, a generic name that we adopt without reserve. Quoting: 
 

Here we consider light in the geometric optics approximation, that is 

to say, as a fluid of point like “luxons” (Coll, 1985, Endnote [7], our 

emphasis). 
 

Therefore, along the world tube representing a light beam, particularly a 

light ray, the luxons are traveling, and the light wave is laterally limited by the 

tube. Louis de Broglie then defines the world tube as a capillary tube, with the 

simultaneous luxons defining a surface evolving along the tube, just as Newton 

did for his definition of the light ray (Newton 1952, p. 1), thereby generating the 

whole physics of light. Among other things it becomes possible to define a 

physical coordinate line with respect to this capillary tube: it is the coordinate 

along the normal to the surface determined by simultaneously travelling luxons. 

Quoting, again: 
 

… the theoretical or experimental conclusion that a specific physical 

field, under particular conditions, depends only on the variable r is void 

or, at least, confuse, if the nature of the coordinate line “r variable” is not 

precised (radial, cylindrical, angular or other). And, from the 

experimental point of view, we need to describe the physical procedure 

for its construction. It is this sense that has, for us here, the word 

operational (Coll, 1985, Endnote [4], our emphasis). 
 

It is this meaning of the word „operational‟ that we also adopt all along 

the present work. The dendrites and axons of a neuron will be described as de 

Broglie capillary tubes along whose, some luxons are circulating. Only, for the 

neuron, the luxons must be particularly defined, and this is the point where 

cosmology enters the stage. For, we shall carry out this definition in relation 
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with the physical structure of the universe represented by the living brain, after 

the physical example of the universe at large. But, let us first see what the de 

Broglie light ray involves from a physical point of view. 

 
2.2. The Louis de Broglie’s Light Ray 

  

Therefore, our first task here is to describe a light ray – anaxon or a 

dendrite – which can be imagined as a tube of trajectories defined by the motion 

of some material points – which, following Bartolomé Coll, we label 

generically as luxons – along it. As we said, this task has already been 

accomplished in physics by Louis de Broglie who, aiming at proving a certain 

noncontradiction between the concepts of wave and particle, has actually 

brought a much greater service to knowledge in general (de Broglie, 1926a-e). 

Let us first see the facts. 

At the time when he issued the two works just cited, Louis de Broglie 

was engaged in proving explicitly that there is no gap between geometrical 

optics and quantum theory. The specific problem at that time was, in de 

Broglie‟s idea, to prove that the light can be seen as a flux of photons, and he 

intended to show that this image contradicts neither the optical nor the 

mechanical rules of thinking. The optical rules were considered all concentrated 

in the description of propagation of light, as described for the case of vacuum 

by the D‟Alembert equation: 

 
 

(2.1) 

 

In this context, Louis de Broglie took notice of the fact that an optical solution 

of the Eq. (2.1) should be written in the form: 
 

 
 

(2.2) 

 

which must then be submitted to some space constraints, evidently mandatory in 

optics by the presence of screens, diopters, or some other obstacles met by light 

in space. Then, de Broglie was forced to consider the light as a fluid of particles, 

for the incarnation of which the best candidate seemed, at that moment, the idea 

of photon, „floating in the air‟ so to speak, for at that moment of time the photon 

was just getting baptized (Lewis, 1926). The light ray should therefore be taken 

as describing a flux of fluid particles. 

 Now, by taking the light quanta as those material particles able to 

explain, from a classical point of view, the particulate structure of light, de 

Broglie noticed that one needs to assume a solution of Eq. (2.1), having 

nonetheless not only the phase, but also the amplitude time dependent: 
 

 
 

(2.3) 
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Here  is the same function as in (2.2), embodying the earlier idea of Louis de 

Broglie himself, that the corpuscles and their representative waves have the same 

phase (de Broglie, 1923). Why should now the amplitude be variable with time? 

 De Broglie gives an explanation in the English version of the work cited 

(de Broglie, 1926c), and this can be summarized as follows: such an elementary 

particle must be described by a field satisfying the Klein-Gordon equation, not 

the D‟Alembert‟s (Shpilker, 1984). This defines, choosing words of de Broglie 

himself, «the wave phenomenon called „material point‟», and can be written as: 
 

 

 

(2.4) 

 

The last identity in this equation represents de Broglie‟s initial idea 

from 1923, apparently prompted by the relativistic mechanics, according to 

which one can associate, via energy, a frequency to a classical material point: 

the de Broglie’s frequency. Now, the fundamental solution of Eq. (2.4), based 

on which one can build the general solution as a linear combination according 

to mathematical rules, is taken by de Broglie in the general form: 
 

 
 

(2.5) 

 

with av a constant, β  v/c  and  γ
2
(1–β

2
)  1, and the direction of motion chosen 

as the axis z of the reference frame. No doubt, the general solution of (2.4) can 

be taken as being a linear combination of waves of the form (2.5), having 

different velocities. However, any of these should have a space-time singularity: 

at the event that locates the „material point‟ in motion with respect to a origin of 

space coordinates and time, its amplitude becomes infinite. Thus, when 

considering the classical material point a „wave phenomenon‟, if this wave 

phenomenon is classically located as an event, i.e. interpreted as a particle, the 

representative wave of this particle has a specific singularity at its location: its 

amplitude becomes infinite. In other words, by interpretation, the very concept of 

wave acquires here a differentia, for the particle itself gets new properties above 

and beyond its usual classical depiction as a position endowed with mass or 

charge: it is a singularity of the wave amplitude, whereby this one becomes infinite. 

However, from a „phenomenological‟ point of view, we might say, the 

things are to be presented in quite a different manner. The wave is here a light 

wave, and it should be the locus, in a proper geometrical sense, of an ensemble 

of events representing the «wave phenomena called „material points‟». The 

linearity of the Klein-Gordon equation allows indeed a superposition of wave 

phenomena represented by (2.5) with different velocities, but there is a problem: 

as all of the material points move with the speed of light, one has β → 1, and 

thus γ → ∞, for all the waves of this type. So the resultant wave, if represented 
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by a linear combination of such „wave phenomena‟, must have a rather 

vanishing amplitude no matter where the material points representing the light 

are located in space and time. Thus, while the classical trajectory of a material 

point is the locus of successive positions of a material point in motion, in a 

wave representation of „the phenomenon called material point‟ it is simply the 

locus of the events where the amplitude of the wave vanishes, no matter of the 

time sequence and space locations of these events. Therefore, along the space 

line representing (continuously or not) a trajectory of the „wave phenomena 

representing a classical material point‟, the phase should also be arbitrary 

according to this optical representation, as the amplitude vanishes. 

A little digression may be in order here: the phase and the amplitude of 

the optical elongation (2.5), which allowed the preceding speculations, are quite 

particular. However, only as such particulars allowed they the very construction 

of the special relativity, based on D‟Alembert equation (Lorentz, 1904; Lorentz, 

1916). Thus, against these speculations one might raise the objection that the 

representation (2.5) is just as… special as the relativity is, and a general 

definition of the optical signal in the form A(x,t)e
i(x,t)

 may render them 

obsolete. Two things have to be considered, however, when engaging along this 

line of thought. First, for a general signal like the above one, satisfying any 

desires of generality for both amplitude and phase, we do not have an equation 

of motion: in wave-mechanical terms, such a signal is not interpretable yet 

(Darwin, 1927). It is only when such a function becomes interpretable by 

ensembles of free particles that it becomes useful to physics. Uncovering a 

general equation to be satisfied by such a general function is vital for the natural 

philosophy in general, for then, based on it, one can argue just how „special‟ is 

the special relativity, viz. one can give some reasons for a general… special 

relativity, so to speak, ideally even to find its general formulation. As it turns 

out, such a function satisfies the free particle Schrödinger equation (Schleich et 

al., 2013), given some natural conditions that define what came to be known in 

physics as a Madelung fluid (Madelung, 1927). Secondly, as Dirac once has 

noticed in his works which inspired a certain wave-mechanical approach to the 

idea of magnetic charge (Dirac, 1931, 1948), a general spatial geometric locus 

of zero amplitude of the signal might be instrumental for the condition of 

quantization based on the concept of wave function satisfying a Schrödinger 

equation for the free particle. Therefore, we should not avoid such a line of 

thought, by any means. 

However, Louis de Broglie has elaborated on another observation, in 

concordance with his own idea of phase waves. Notice the fact that if the 

amplitude function f is to have any mobile singularities whatsoever, we need to 

decide the nature of them: are they space-time singularities where the amplitude 

goes to infinity, or just „phenomenological‟ singularities where the amplitude 

vanishes. In order to decide their nature, notice that they have to move across 

the surface of constant phase, particularly normally to this surface. In this case 
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the nature of singularity can be directly settled by the amplitude only, for the 

speed of a material point in a position M at the time t is, according to the 

mathematical laws, necessarily of the form: 
 

 

 

(2.6) 

 

Here the variable n is taken along the very trajectory of the material 

point – the symbol n is here intended to suggest the idea of „normal‟ to the wave 

surface – and the partial derivative upon time (∂tf) as well as that along the 

normal direction (∂nf), are taken in the position M at the moment t. 

In order to use this definition, we need a few partial results of our 

optical and wave-mechanical representations. Thus, substituting (2.2) and (2.3) 

into Eq. (2.1), and making the imaginary parts of the relations thus obtained 

vanish (the physical results have to be real at any rate!), one can find the 

following equations connecting the optical amplitude A and particle amplitude f 

to phase : 
 

 

 

(2.7) 

and 

 

 

(2.8) 

 

Then we simply have, as de Broglie noticed, that the Eq. (2.7) will 

describe the diffraction phenomena according to physical optics, while the Eq. 

(2.8) will describe the diffraction phenomena according to quantum theory, i.e. 

by an ensemble of particles, even though with this last concept taken as a 

classical material point. It should be indeed all about diffraction, forasmuch as 

we have to deal here with a space locus of events distributed in space, and not 

with a classical trajectory per se. Therefore, this is indeed an interpretation of 

the wave in the acceptance of the definition given by Charles Galton Darwin. 

However, in the French version of his work (de Broglie, 1926c), Louis 

de Broglie assumes that if, as one approaches at constant time a light particle 

following its trajectory, the function f varies as the reciprocal distance to that 

particle, then in the position M of the particle the ratio between f and (∂nf) 

vanishes. This fact obviously generalizes the one represented by the Eq. (2.5), 

so that it can be taken as typical for the wave mechanics. Under this condition 

of space behavior of the amplitude, the Eq. (2.8) gives a special expression for 

the light particle velocity in a certain position, and this expression befits the 

classical character of phase. Indeed, using the Eq. (2.6) and the Louis de 
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Broglie‟s condition of „approaching the point at constant time‟ in the form: 

f/(nf)  0, the formula for this velocity reveals the important fact that the 

phase should be a potential of velocities, i.e. it should assume the very classical 

role of the variable of action: 

 

 

(2.9) 

 

Thus, the only thing left for explanation in this case, would be the 

construction of a physical light ray, and this can be classically understood as a 

thin pencil of trajectories of classical material points. So, de Broglie came to the 

idea that an infinitely thin tube confining an ensemble of trajectories of light 

particles would be able to do the job. Thus, the classical Newtonian image – or 

to be more precise, the Hookean image – of the physical light ray takes, within 

de Broglie‟s description, a geometrically precise modern shape: a generalized 

cylinder, whose area of any transversal section is variable with the position 

along the ray. An image perfectly fit for another kind of ray, viz. the neuron, in 

another kind of universe, viz. the brain. Given, of course, a few more essential 

details on which we have to work, in order to realize that fit. 

And so it comes that de Broglie assimilates a physical ray with a 

capillary tube of variable cross-section , and he describes this tube by the 

known physical principles of the theory of capillarity. Assuming, for instance, 

that the flux of light particles is conserved along the ray – an assumption that 

can, in general, be taken as the fundamental attribute of the concept of ray 

within the theory of fluids – the equation representing this situation: 
 

  (2.10) 
 

should be satisfied, where  means the Newtonian volume density of the 

particles of light. Taking the logarithmic derivative in the direction of the ray, 

one can find 

 

 

(2.11) 

 

By a “known theorem of geometry”, as de Broglie declares, one can calculate 

the last term here. 

Now, because the physical ray is a space construction – a solid shape, as 

it were – it would be hard to decide the meaning of /n – is it effectively 

variation along the ray itself, or along the normal to the wave surface as de 

Broglie assumes!? – but to a good approximation we can take that it means 

variation along the normal, to start with. It is, indeed, only in this case that we 

can take advantage of that „known theorem‟ to which de Broglie alluded, and 

according to which the last term in (2.11) is the double of the mean curvature of 
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the surface   const in a given position (Mazilu et al., 2019, Chapter 3). That 

quantity has as expression the sum of the principal curvatures of the surface: 
 

 

 

(2.12) 

 

Here R1,2 are the radii of curvature of the principal sections of the surface. With 

(2.9) and (2.12), the Eq. (2.11) now takes the form 
 

 
 

(2.13) 

 

and comparing this with (2.7), one finds 
 

  (2.14) 

 

Thus, Louis de Broglie (de Broglie, 1966) has the essential result of 

interpreting the physical optics based solely on diffraction phenomena without 

making any reference to the idea of harmonic oscillator and its classical 

dynamics in order to calculate the intensity of light. Indeed, the Eq. (2.14) 

shows that the density of the light particles conceived as classical material 

points, localized quanta as it were, or even luxons in the expression of 

Bartolomé Coll, is proportional to the intensity of the classical theory of light. 

The difraction phenomena are, therefore, explained by the corpuscular theory, 

just as well as the interference phenomena are, provided we add to the wave 

mathematical image a necessary property deriving from the wave representation 

of classical material point: the ratio between the amplitude of the wave and the 

normal derivative of this amplitude, taken at constant time, vanishes in the 

position of the „wave phenomenon called material point‟. 

An issue is still lurking in the background though, even a fundamental 

gnoseological issue for that matter: was this effort of mathematics, and stretch 

of imagination necessary at all for our knowledge? From the point of view of 

the continuity of the knowledge, the answer is definitely affirmative. Indeed, 

making reference to the harmonic oscillator in the case of light – in order to 

interpret the intensity of light, for instance, to say nothing of some other 

physically fundamental necessities – is, by a tad stretching the meaning of word, 

„illegal‟. For, as a purely dynamical system, the harmonic oscillator is a 

dynamical system described by forces proportional with displacements (Hooke-

type elastic forces), and in the case of physical optics the second principle of 

dynamics is only incidental, being introduced only by a property of 

transcendence of the second order ordinary differential equation: it describes 

any type of periodic processes. And the fact is, that in the foundations of 
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modern physical optics, the periodic processes of diffraction have more to do 

with the theory of statistics than with the dynamics (Fresnel, 1827). 

This is, however, not to say that the harmonic oscillator is to be 

abandoned altogether, as a model, because it is not the case, either from 

experimental point of view, or theoretically. All we want to say is that we need 

to find its right place, and the right form of expression in the theory, and this is 

indicated again through the order imposed by the measure of things, this time as 

their mass. Indeed, dynamically, the second order differential equation aferent 

to second principle of dynamics, involves a finite mass. On the other hand, for 

light, the mass – in any of its two capacities, gravitational or inertial – is 

conspicuously absent, and if the second order differential equation is imposed 

by adding the diffraction to the phenomenology of light, this means that this 

equation describes actually a transcendence between finite and infinitesimal 

scales of mass. As it turns out though, a universe with constitutive rest particles 

having negligible mass, is just as legal as a universe having negligible charge, 

like the universe we live in. The brain is just such a universe with rest particles 

having negligible mass! 

 
2.3. The Madelung Fluid of Luxons 

 

There is not too much to say over what was just said in the previous 

§2.2, in order to catch the general idea that the physical theory of a classical 

light ray, as completed by Louis de Broglie, can be taken as the theory of a 

physical ray in general. One just needs a few further „tweaks‟, as it were, in 

order to bring it in the position of helping in operationally defining a coordinate 

system, according to the ideas of Bartolomé Coll and his collaborators (Coll, 

1985; Coll and Morales, 1988; Coll and Morales, 1991; Coll, 2001). Of these 

necessary additions, we can recognize a few right away. 

First of all comes the interpretation: Louis de Broglie just showed that 

adding particles to the optical idea of waves, produces the optical formula 

according to which the density should be proportional to the square of the signal 

amplitude of a wave representing the „phenomenon called material point‟. Then 

everything comes down to the interpretation of the wave function, which should 

be part and parcel of a general interpretation process, and this is the moment 

where the idea of ensemble makes its proper entrance into argument. Like in all 

classical cases, the ensemble enters first by its historical element – the classical 

material point – just as in the quintessential physical case of classical ideal gas. 

It is time now that we turn the floor over to Charles Galton Darwin for a 

brilliant choice of the proper words characterizing the physical situation: 
 

It is almost impossible to describe the result of any experiment 

except in terms of particles – a scintillation, a deposit on a plate, etc. – 

and this language is quite incompatible with the language of waves, 
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which is used in the solution. A necessary part of the discussion of any 

problem is therefore the translation of the formal mathematical solution, 

which is in wave form, into terms of particles. We shall call this process 

the interpretation, and only use the word in this technical sense [(Darwin, 

1927); our Italics]. 
 

Notice, in this context, the necessity of the presence of a surface in 

order to support, as it were, the records of a certain experiment: “scintillation, 

deposit on a plate, etc.”. This calls for a second addition we have in mind in 

order to properly complete the theory of physical rays according to de Broglie‟s 

philosophy, namely the concept of a physical surface. To Louis de Broglie this 

was a portion of a vave surface limited by a capillary tube, and thus the 

definition imposes having a limited surface area, no matter of the direction of 

propagation in space. 

However, the definition of a physical surface does not involve just its 

geometrical properties, but should also include some physical ones. For 

instance the surface of a fluid has superficial tension, and this varies with the 

electric and magnetic state of the fluid. Better yet, in order to describe a 

holographic universe like the brain, in the acceptance of Karl Pribram for 

instance, one needs to insure physical properties involving the idea of memory, 

and this needs a special description of the physics of a surface. We shall turn to 

these issues in due time. 

Meanwhile we just need to find what is happening if in the de Broglie‟s 

own theory we do not use the idea of frequency like de Broglie himself used it, 

i.e. through a phase linear in time. Fact is, that any signal represented in the 

complex form, with an amplitude and phase depending on time and position in 

space in a general manner: 
 

 
 

(2.15) 

 

is the solution of an differential equation resembling the free particle 

Schrödinger equation, provided some specific conditions are satisfied (Schleich 

et al., 2013). Indeed, the complex form we are talking about here assumes a 

general time and space dependence for the phase, as well as for the amplitude 

of the signal. Such a functional form of the phase and amplitude of the wave 

function is the property used by Erwin Madelung for describing the first 

interpretation ever – in the sense of Darwin‟s definition, of course – of the wave 

mechanics (Madelung, 1927). The essential a priori condition of Madelung‟s 

interpretation is that the density of the fluid of particles must be proportional to 

the square of the magnitude of the wave function. This is, therefore, an unsecured 

assumption in his case. As it turns out, we can give it up, with significant 

consequences. Indeed, if the wave function is a complex function of the form 

(2.15), we have the unconditional mathematical identity (Schleich et al., 2013): 
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(2.16) 

 

where  is a constant having the physical dimensions of a rate of area (m
2
/s). 

Then in the „specific conditions‟ necessary in order that (x,t) be a solution of 

the time dependent Schrödinger equation for the free particle, to wit: 
 

 
 

(2.17) 

 

are in fact the two known equations that guarantee the vanishing of the right 

hand side of Eq. (2.16), so that (2.17) can take place: 
 

 

 

(2.18) 

 

The first of these equations is the equivalent of classical Hamilton-

Jacobi equation. The second one, is a continuity equation for the cases where 

the square of the amplitude of function (x,t) can be taken as a density. 

Obviously, according to Louis de Broglie‟s theory just presented above, the 

classical light rayis one of such cases, if it is conceived as a flux of luxons – to 

use our agreed terminology – in a thin capillary tube, and if the moving phase 

surface in this capillary tube is the locus of vanishing of the ratio between the 

amplitude of the wave and its normal derivative. 

Now, an interesting turn of the tide in physics comes with these 

conclusions. Usually, de Broglie‟s doctrine is connected with the objective 

correlation between particle and wave. On the other hand, the Schrödinger 

doctrine is usually connected with the subjective correlation, according to which 

the wave describes the probability of presence of a particle in a place from the 

universe. And here we are now, with the conclusion of a necessary logical 

completion of the definition of classical light ray, enforced, as it were, by the 

phenomenology. This completion asks for a precise connection between the 

amplitude of the objective signal representing the light, and the density of the 

fluid of classical particles helping in the physical interpretation of light by a 

light ray. To wit, according to Louis de Broglie, the density of the fluid 
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streaking along the light ray must be proportional with the square of the 

amplitude. Then notice that the de Broglie‟s original conclusion is pending on 

the admission of the fact that the phase of signal is linear in time. This is a 

consequence of adding the diffraction phenomenon to the classical Newtonian 

phenomenology of light, based on just reflection and refraction phenomena. 

Now, if we give up this condition, which comes down to assuming free 

particles for interpretation and, consequently, a functionally arbitrary phase as 

in Eq. (2.15), the signal representing the light ray must satisfy the Schrödinger 

equation (2.17). 

Here, however, we have to pay a price: the classical potential suggested 

by the the first equation from (2.18) taken as a Hamilton-Jacobi equation for the 

phase of function (x,t), is only defined by the amplitude of this function, 

through equation 

 

 

(2.19) 

 

This can be taken as a stationary Schrödinger equation, but it is not a 

consequence of the nonstationary Schrödinger equation, at least not 

exclusively, as in the original Schrödinger theory. In other words the 

nonstationary Eq. (2.17) is a mathematical tool of unquestionable existence and 

necessity – just like any other mathematical concept used by physics – as long 

as the wave function is complex. The problems arise with the Eq. (2.19), and 

they concern only the mathematical structure of the functions representing the 

amplitude and the phase of the wave function already satisfying the 

Schrödinger equation. These should tell us what is a free material particle from 

the point of view of wave mechanics. When it comes to considering the 

potential, the phase of wave function cannot be identified with the classical action 

quite unconditionally: this last one must satisfy the above constraints. Only in this 

instance can one have the freedom of using the potential in a two-way reasoning: 

either as a given function and then helping to find the amplitude – as it is 

currently used, almost exclusively, in physics – or, once the amplitude known, it 

helps to construct the potential. 

In this last stance the theory of Louis de Broglie adds the phenomenon 

of holography to the phenomenology of light. It is just as it was, historically 

speaking, the case of Augustin Fresnel, who added the phenomenon of 

difraction of light to the classical phenomenology based only on reflection and 

refraction phenomena. Indeed, if the light transports information, the Eq. (2.19) 

shows that this is embodied in its amplitude, which then can be reproduced 

anywhere in the univers where the light ray goes. It is reproduced in the form of 

a potential to be calculated from the amplitude, which describes a physical 

system, like in the original case of Schrödinger (Schrödinger, 1933). Then all of 

a sudden, the words of Charles Galton Darwin acquire a deeper meaning than 
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the existence of a surface on which the information is to be deposited: this 

information should be deposited not as a photogram, but as a hologram! In 

other words, the hologram is part and parcel of the light phenomenon, just like 

reflection, refraction and diffraction: we are not to forget it when describing the 

light; but mostly we are not to forget it when we use the light as a model, 

especially as a model of brain. To put it straight, Karl Pribram was right: the 

memory of brain is a hologram… if the neuron can be modeled as a light ray! 

Thus, we can say that the Eq. (2.17) is indeed a universal instrument of 

our knowledge, once it ensues mathematically from a necessary complex form 

of the wave function. Therefore, the Schrödinger nonstationary equation for the 

free particles should be considered as essential, once it involves no. However, 

classically, these particles may not be free, as the first of the Eqs. (2.18) shows. 

In the very process of interpretation we need to provide the means of 

assembling them into physical structures. These are then described by the Eq. 

(2.19), giving the potential in terms of the amplitude of wave. Inasmuch as the 

potential shows classically where the forces responsible for these structures are 

to be found, the universe thus described is holographic. Consequently, if the 

function (x,t) represents itself an ensemble of free particles as required for a 

proper physical interpretation, these are free particles not from classical point of 

view, but from the Schrödinger equation point of view: classically they can be 

anything along the line of physical freedom. Like the luxons of Bartolomé Coll! 

The main point of this image of interpretation is the shape of the 

capillary tube representing the light ray: it needs not be a straight cylinder, as de 

Broglie himself thought of it, but a canal surface, in general of variable cross 

section will suffice. A classical example may come in handy here, for it made 

history in building a conception: the classical hydrogen atom, to which, 

actually, the original Schrödinger theory is referring. Assuming space extension 

of the electron, this one describes a virtual de Broglie ray around the nucleus: a 

toroidal ray as it were. The electron can then be interpreted as an ensemble of 

luxons held together by „forces‟ of the de Broglie type, describing the behavior 

of the classical amplitude. It is these forces, then, that are responsible for the 

cohesion of the electron. Some similar forces should then be responsible for the 

cohesion of the proton in the hydrogen atom. 

The classical argument of interpretation of the wave function brought 

out by Erwin Madelung, assumes the classical objective existence of a potential 

(Madelung, 1927). As a result the potential appears as „updated‟ by 

interpretation, with a term like (2.19), representing what Madelung calls the 

„quantum contribution‟. In this guise, the theory herebegs for a kind of 

generalization of the modern principle of asymptotic freedom: in a region of 

pure quantum forces the wave function describes an ensemble of free particles. 

For, indeed, the stationary Schrödinger Eq. (2.17) shows that the continuum 

described by the function (2.15), as interpreted by a swarm of free particles in 

the manner proposed by Madelung and enforced by de Broglie, appears as an 
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ensemble of particles evolving under a purely quantal potential: the whole 

potential, not just part of it, is in fact a „quantum contribution‟, as Madelung 

defines it. By its amplitude, the wave carries a memory that can be reproduced 

as a physical structure in any point of space. Thus, the description of the 

continuum by the function (2.15) is a purely undulatory description of a region 

of space-time. Its interior however, is a swarm of free classical particles – the 

Coll‟s luxons – described by an equation of continuity for a density proportional 

to the square of the modulus of function (2.15). Each one of these classical 

particles has a momentum given by the gradient of phase of (2.15). However, a 

question still stands: what this very region represents? The answer to this 

question cannot be given classically, for the classical argument has already been 

exhausted. But Louis de Broglie taught us that it involves the frequency, the 

surface concepts, and with these the concept of hologram, on which we have to 

further elaborate in due time. 

 
2.4. First Characterization of Direction Along the Ray 

 

We are now in position to state that this interpretation is related to the 

SL(2,R)-type algebraical structures, which will be revealed in its details further 

in the present work. Both the classical mechanics and the general relativity 

contain a clear possibility of such an interpretation, for the case of the so called 

free fall in a gravitational field. It thus becomes obvious that we need to put this 

interpretation under the concepts related to the nonstationary Schrödinger 

equation for the free particle, insofar as this equation is a fundamental 

mathematical instrument. 

Fact is that the nonstationary Schrödinger equation for the free particle 

admits, besides the clasical Galilei group proper, an extra set of symmetries 

(Niederer, 1972) that, in general conditions, can be taken in a form involving 

just one space dimension and time, described as a SL(2,R) type group action in 

two variables with three parameters (de Alfaro et al., 1976). Limiting the 

general conditions, the space variable can be chosen as the radial coordinate in 

a free fall, as in the case of Galilei kinematics, which can also be extended as 

such in general relativity, for instance in the case of free fall in a Schwarzschild 

field (Herrero and Morales, 1999; Herrero and Morales, 2010). The essentials of 

the argument of Alicia Herrero‟s and Juan Antonio Morales‟ work just cited, are 

delineated based on the fact that the radial motion in a Minkowski spacetime 

should be a conformal Killing field, which is a three-parameter realization of 

the SL(2,R) algebra in time and the radial coordinate. This is a Riemannian 

manifold of the Bianchi type VIII (or even type IX, forcing the concepts a little) 

when taking the stand of one of the epoch-making, and widespread, 

nomenclatures of the theory of general relativity (Bianchi, 2001). The bottom 

line here is that, as long as the general relativity is involved, the nonstationary 

Schrödinger equation must be taken to describe the cosmological continuity of 



Bul. Inst. Polit. Iaşi, Vol. 65 (69), Nr. 4, 2019                                          35 

 

matter. And since, as a universal instrument of knowledge, this Schrödinger 

equation is referring to free particles, we need to show what kind of freedom is 

this in classical terms. These classical terms are regulated by a Riemannian 

SL(2,R) type structure. 

In order to show this, it is best to start with the finite equations of the 

specific action of SL(2,R) group, and build gradually upon these (Mazilu and 

Porumbreanu, 2018), in order to discover the connotations we are seeking for. 

Working in two variables (t, x) representing the time and the space variable 

respectively, the finite equations of this group are given by the transformations: 
 

 

 

   (2.20) 

 

This transformation is, indeed, a realization of the SL(2,R) action in two 

variables (t,x), with three essential parameters (one of the four constants , ,  

and  is superfluous here). Every vector in the tangent space SL(2,R) is a linear 

combination of the three fundamental vectors, the infinitesimal action 

generators: 
 

 

 

   (2.21) 

 

These satisfy the basic structure equations: 
 

 
 

   (2.22) 

 

which we take as standard commutation relations for this type of algebraic 

structure, all along the present work. The exponential group has an invariant 

function, which can be obtained as the solution of a partial differential equation: 
 

 
 

 

 

which, in view of (2.21), means 
 

 
 

   (2.23) 

 

The general solution of this equation is a function of the arbitrary values of 

the ratio: 

 
 

   (2.24) 
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which represents the different paths of transitivity of the action described by 

operators from Eq. (2.21). 

In order to draw some proper conclusions from these mathematical 

facts, let us go back to the transformation (2.20) and consider it from the point 

of view of classical physics. The first principle of dynamics offers a special 

content to the classical time in its capacity of a sequence: it is causally and 

deterministically represented by the uniform motion of a free classical material 

particle. Such a particle is free as long as no forces act upon it. The Eq. (2.24) 

faithfully records this idea in an obvious form: the paths of transitivity of the 

group (2.20) are given by the „radial motion‟, as it were, of a free classical 

material point, no question about that, for the quadratic polynomial in time 

represents a uniform motion in an arbitrary direction in space. Questions rise, 

however, and on multiple levels at that, when noticing that the general solution 

of Eq. (2.23) is an arbitrary function of the ratio (2.24). For once, we are 

compelled to notice that the content of time in (2.20) is not classical anymore, at 

least not in general, being a ratio of coordinates representing two uniform 

motions. Likewise, the second Eq. (2.20) can be taken as representing the 

content of spatial coordinate of the motion in terms of the classical coordinate 

of a uniform motion: as long as the some forces act, the space coordinate along 

the direction of action is not linear anymore, but its ratio to a linear motion can 

be taken as a coordinate. This much, at least, can be put in the common charge 

of the wave mechanics and general relativity, regarding an „updating‟ of the 

idea of time and space contents for the necessities of constructing a proper light 

ray. But there is more to it, regarding the concept of freedom, because at this 

point we start to notice some apparently unrelated facts from the past, which 

seem to pick up concrete shapes, all converging to the ratio from Eq. (2.24). 

First along this line, comes the second of Kepler laws, viz. that law 

serving to Newton as a means to introduce the idea of a center of force: if, with 

respect to such a material point, a motion proceeds according to the second 

Kepler law, then the field of force should be Newtonian. The wave mechanics 

shows that this law means more than it was intended for initially, namely that it 

should have a statistical meaning, according to the idea of Planck‟s quantization 

(Mazilu and Porumbreanu, 2018). Indeed, if x denotes the distance of the 

moving material point from the center of force, we have 
 

 
 

   (2.25) 

 

where   is the central angle of the position vector of the moving material point 

with respect to the center of force, and the letter a with an overdot means the 

„rate of area‟. In this form the law usually serves as a transformation in the 

mathematical treatment the central motion, defining a new time that can be 

identified physically as the eccentric anomaly . However, from the point of 
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view of the physical content of time, the second equality in Eq. (2.25) tells us 

much more, if we take the argument out of the mathematical context of the 

classical Kepler problem. 

To wit, consider again the mentioned classical hydrogen atom: an 

extended body revolving in a central field of Newtonian forces. It can be 

imagined as a swarm of classical material points, and such a swarm illustrates 

the classical laws, provided it is considered as a swarm of free material points in 

the classical sense of the word (Larmor, 1900). The model fits perfectly for the 

luxons of Bartolomé Coll, and is therefore prone to a generalisation for the 

physical unit of charge and mass. Then, in the first of Eqs. (2.20) this 

requirement would mean that the material points are considered simultaneously. 

Each material point can be located in the swarm by four homogeneous 

coordinates (,,,), or three nonhomogeneous coordinates, if the Eqs. (2.20) 

represent the content of time and radial coordinate for the space region covered 

by this body. The simultaneity condition of the free material points of swarm 

can be differentially characterized, giving a Riccati equation in pure 

differentials: 

 

 

   (2.26) 

 

Thus, for the description of the extended body in motion as a succession 

of states of an ensemble of simultaneous material points, or luxons, as it were, it 

suffices to have three differential forms, representing a coframe of the SL(2,R) 

algebra: 

 

 

   (2.27) 

 

That this coframe refers to such an algebra, can be checked by direct 

calculation of the Maurer-Cartan equations which are characteristic: 
 

 

 

   (2.28) 

 

Élie Cartan has shown that under these conditions one can prove that 

the right hand side of Eq. (2.26) is an exact differential (Cartan, 1951), therefore 

it should always have an integral. The Cartan-Killing metric of this coframe is 

given by the quadratic form (2
/2)

2
 – 13

, so that a state of an extended 

orbiting body in the Kepler motion, can be organized as a metric phase space, a 
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Riemannian three-dimensional space at that. The geodesics of this Riemannian 

space, are given by some conservation laws of equations 
 

 
 

   (2.29) 

 

where a1,2,3 are constants and   is the affine parameter of the geodesics, so that, 

along these geodesics the differential Eq. (2.26) is an ordinary differential 

equation of Riccati type: 

 
 

   (2.30) 

 

This equation can be identified with (2.25), provided its right hand side 

is proportional to the square of a „radial coordinate‟ of a free classical material 

point. Mathematically this requires an ensemble generated by a harmonic 

mapping between the positions in space and the material points, with the square 

of the „radial‟ coordinate x measuring the variance of the distribution which 

describes the spreading of material points in space. 

 
2.5. Necessities of Improvement for Adaptation 

 

In order to be able to adapt a physical theory into describing the living 

brain, a few necessities of general improvement are in order, on which we need 

to work specifically. First, the basic idea is that we have to construct a 

coordinate system for the matter of brain, and this should be quite specific. 

However, it should be based on the general idea of light ray, as always was the 

case in physics. Only, the concept of light ray has to be improved itself, in order 

to account for the whole host of properties naturally invested in it, to which it 

answered only sporadically thus far. For, only having the whole set of properties 

at our disposal, shall we be able to chose those among them adequate in the 

description of the brain. As a matter of fact, this was the gist of history, and we 

have to follow it faithfully: the properties of the light ray have been discovered 

sporadically along the history, for timely necessities of explanation of the world 

around us. Rounding the concept with all its differentiae just gives us the chance 

to properly choose those appropriate from among them. 

The pinnacle of the concept of light ray, seems to be the concept that we 

connected here with the name of Louis de Broglie. This concept of light ray 

harmoniously updates the classical concept due to Newton, up and above the 

classical update due to Fresnel. Happily enough, it turns out that the model 

responds to the classical concept of duality wave-particle, and also contains the 

Schrödinger theory under a remarkable condition: the light ray thus described 

must possess the property of holography. If it is to reveal here a historical 

continuity, one can say that while the classical concept of Newtonian light ray 

has been defined based on the classical phenomena of reflection and refraction, 
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it needed to be completed, and Fresnel did it by introducing a new phenomenon: 

the diffraction of light. This, as it turns out, is not a systematic completion, 

inasmuch as the de Broglie‟s light ray reveals another phenomenon to be added 

to our experience: the holography. 

Now, in order to use this concept of light ray for the world of brain, in 

which case the skull is the only global reference frame we can physically 

recognize right away, we need to develop, first and foremost, the statistical side 

of the theory of light ray. And this we shall start to do right away. As it turns 

out, the whole theory issues naturally from the requirement of de Broglie that 

the amplitude of the wave at a certain time goes inversely with the distance to 

the wave surface along its normal. 

 

3. Phase Related to Signal Recording in a Universe 

 

The physical description of a living brain involves almost exclusively 

recorded signal at locations on the skull. Now, a recorded signal can always be 

thought of as representing a wave function, independently of the idea of 

interpretation, as it were, i.e. independently of the fact that it is a solution of 

Schrödinger equation or not. However, in order to have a meaning for this 

signal we still need to treat the recording as a complex function of the form Ae
i
. 

Then, a meaning could be extracted from the data, if this complex function is 

taken to represent a harmonic oscillator in a given space point x. In this case 

both the amplitude A and the phase  are to be considered as arbitrary 

continuous functions of a time sequence, and this interpretation is expected to 

reduce such arbitrariness. The principle to be applied is just as simple as this: 

experimental practice always asks for a certain analysis of signal in the time 

domain, allowing us to assign physical properties to the magnitudes extracted 

from the recording. As it turns out, the statistical properties of these magnitudes 

have, indeed, remarkable statistical properties. 

Start with the observation that a classically mandatory parameter in this 

analysis is the frequency, which can be extracted in a variety of ways from the 

data. The most common kind of frequency to be extracted from a recorded 

continuous signal is the instantaneous frequency (Mandel, 1974). This kind of 

frequency can be calculated as the first time derivative of the phase of signal 

function: it coincides with the regular frequency only in the classical cases 

where the phase is linear in time, like that considered by Louis de Broglie in his 

construction of the light ray, as shown before. Now, denote by q(t)  A(t)e
i(t)

 

the signal function in this instance, i.e. as a local – at an arbitrary location in 

space –„elongation‟ representing the recorded signal. We want to associate this 

signal with a mechanical oscillator in order to have an acceptable physical 

interpretation of the parameters extracted from the data, especially of the phase 

as a function of time. This association comes down to the following 
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equivalences, representing connections between amplitude and phase as 

functions of time at a certain position: 

 

 

 (3.1) 

 

from which, denoting by {*,*} the Schwarzian derivative of the first symbol in 

curly brackets with respect to the second one (Needham, 2001), we have: 
 

 
 

 (3.2) 

 

According to the procedures of time-frequency analysis of the signals 

(Cohen, 1995), the Schwarzian derivative of the phase, appearing in the right 

hand side of this equation, is bound to represent some statistical properties of 

the frequency thus defined. Specifically, as we shall document later on here, we 

are naturally led to think of the variance of signal frequency thus defined. This 

means that, the signal having a well defined instantaneous frequency as an exact 

mechanical frequency of a damped harmonic oscillator, should have {, t} = 0. 

This would mean 

 

 

 (3.3) 

 

Therefore the most general signal having mechanically well defined 

parameters should be of the form 

 

 

 (3.4) 

 

Now, for a proper choice of the arbitrary constants of integration a and 

b, the Eq. (3.4) is, in fact, a special connection between the group variables 

exhibited earlier in this work. But let us recount the results here, in order to 

better realize what we have acquired thus far. 

 
3.1. Statistics in Defining a Harmonic Oscillator 

 

Notice an apparent „contradiction‟ above: according to Eq. (3.2) the 

instantaneous frequency of a mechanically well defined signal must be a 

constant in time, which is not the case with the phase and frequency from Eq. 

(3.3). In fact, the vanishing of the Schwarzian of phase means a mechanically 
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defined instantaneous frequency, indeed, but at any time along the signal. The 

Eq. (3.2) should be read as it was conceived to start with, and then there is not 

any real contradiction: it defines the mechanical parameters ω0 and λ from the 

recorded data. Taken as such it only shows that it is impossible to solve this 

task in a one-to-one way. The best we can do is to find the quadratic expression 

from the right hand side of the Eq. (3.2) as a function of time, using the 

instantaneous frequency defined in Eq. (3.3). The two mechanical parameters 

are thus defined up to an arbitrary hyperbolic rotation. However, we drew 

attention to this possible issue, inasmuch as the usual physical point of view is 

that there is always a local harmonic oscillator as part of the structure we are 

studying, whose parameters ω0 and λ are known. This a priori philosophy is 

always a source of possible contradictions. It is our opinion that the data must 

be treated more realistically, and hence needs a necessary settling of the 

physical concepts themselves, before even starting to use one theory or another. 

A first incentive along this path, is the fact that the phase itself is 

defined up to a homographic transformation, in view of the invariance of 

Schwarzian to this specific transformation (Needham, 2001). That is to say, the 

condition {, t}  0 describes a class of functions , which can be obtained from 

one another through linear fractional transformations. The „contradiction‟ above 

can then be clarified by the curvature properties of the Schwarzian [see 

(Flanders, 1970); see also (Duval and Ovsienko, 2000), for a modern treatment 

of the problem]. Maintaining the mathematical guise here, we can simply 

declare the obvious: the recorded signal is revealed with the aid of a local clock, 

which should be a periodic motion, or a known periodic process in general, and 

the definition (3.3) should be read in reverse actually. To wit, it provides the 

times recorded by the clock of known frequency, rather than the frequency 

when the time is known, according to equation: 
 

 

 

 (3.5) 

 

This gives a specific Schwarzian curvature in the form: 
 

 

 

 (3.6) 

 

which vanishes only when the time is so chosen that the phase is homographic 

in time. However, the property represented by Eq. (3.6) is a general property 

independent of the functional form of the function (t) and its role in the 

physical theory. More to the point, given any such function, not just a 

homographic one, the function defined by (t)  C[(d/dt)(t)]
–1/2

, satisfies the 

second order differential equation 
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involving the Schwarzian derivative. In other words, for continuous well-

behaving functions, this second order differential equation actually represents a 

connection between the two kinds of derivatives used in any calculational 

process in which they happen to be involved. If, then, the frequency of the local 

oscillator is known, the phase must depend on time in a specific way. We shall 

return to this issue later on. 

Taken face value, however, the physical theory of harmonic oscillator 

reveals one of the most interesting properties of the energy. It is related to the 

conservation law that describes this physical quantity, from which an 

observation noticed and exploited especially by Louis de Broglie ensues. 

Namely, the equation of motion of the damped harmonic oscillator, used in 

(3.1) for extracting the physical properties of the oscillator from our signal, is 

able to tell us exactly which one of the two parameters concerns a statistics 

related to the time sequence only. This characterization can be easily obtained 

for the harmonic oscillator, due to the fact that the two kinds of mechanical 

energy involved in the physical description of this simple system – kinetical and 

potential – are well defined. As strange as it might seem at a first sight, this is 

quite a rare situation in physics in general, and it can be positively used in the 

manner that follows. 

The physics knows here about the well-established result that the 

equation of motion of the undamped harmonic oscillator is a direct consequence 

of the property of stationarity of the time average of the difference between the 

kinetic and potential energies – the Lagrangian – over the whole period of the 

motion. Indeed, the action between two moments of time, from which we 

extract the equation of motion of the oscillator, is the time integral of the 

Lagrangian between the two time moments. Assuming, then, that the physical 

time is a uniformly distributed statistical variable, the physical action can be, 

indeed, construed as the time average of the difference between kinetic and 

potential energies, as de Broglie once noticed (de Broglie, 1961; de Broglie 

1962). Therefore, one can say that the undamped harmonic oscillator is a system 

which distributes the two kinds of interaction mechanical energies – kinetic and 

potential – in such a way that the average of their difference over any time 

sequence included in the period of motion, is stationary. 

Before going any further, let us stop for a moment, in order to 

pinpoint an important idea already mentioned quite a few times in different 

junctures of our discussion in this work. Namely, the concept of time here 

deviates significantly from the regular time concept of classical dynamics, by 

assuming a differentia which brings it closer to the time of special relativity. 

Let us emphasize once again that, if we need to describe a general concept of 
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time, then we have to assume that this concept must have two differentiae: 

that revealed first in the classical case, related to the property of continuity of 

motion, and the one associated mainly with the special relativity in 

describing an electrodynamical universe, whereby the time is a parameter of 

global ordering of events. It is in this last instance that the time is defined by 

the idea of sequence, which is a special case of an ensemble of time moments. 

As the Feynman‟s development of quantum electrodynamics shows, such an 

ensemble may not even be necessarily a causal sequence in the classical sense. 

All it needs is only to remain deterministic from the physical point of view 

(Feynman, 1949). 

Now, continuing on with our discussion of the time statistics related to 

the Lagrangian of harmonic oscillator, not quite the same mathematical 

argument can be applied in obtaining the classical equation of motion of a 

damped harmonic oscillator [the left hand side of the Eq. (3.1), for instance]. 

This one does not involve in its physical structure a direct, uncontrolled 

transition, as it were, between the kinetic and potential energies, as reflected in 

the time average of the Lagrangian. However, the physics underlying the case 

can still be saved by the very same statistical argument, for the statistics 

involved in defining the action that provides the equation of motion is 

essentially the same from a general theoretical point of view. Only its type 

changes, however in a precise manner: by the character of its basic distribution 

density. Indeed, the common observation of a physical nature here, is that the 

equation of motion of the damped harmonic oscillator can be obtained by 

making stationary the action related to the Lagrangian: 
 

 

 

 (3.7) 

 

The first term in paranthesis here is the kinetic energy of the particle of 

mass M, while the second one is the potential energy of the elastic force acting 

on it. R is the damping coefficient, assuming that the damping is proportional to 

velocity. Then, according to its definition, the action corresponding to this 

Lagrangian, is given by an integral like 
 

 

 

 (3.8) 

 

The variational problem associated with this action leads to a Caldirola-

Kanai Hamiltonian, if it is to judge from a purely physical point of view 

(Caldirola, 1941; Caldirola, 1983; Kanai, 1948). This Hamiltonian turns out to 

be no more the sum between kinetic and potential energies as they appear in the 

Lagrangian from Eq. (3.7). The participation of physical parameters to time 
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variation is the main thing to be noticed here: depending on the sign of damping 

coefficient, the inertial mass increases while the elastic stiffness decreases, or 

the other way around. Therefore, there is still an interdependence between the 

terms of the Lagrangian, but with the notable participation of the physical 

parameters of the oscillator. The Hamiltonian may not even be a conserved 

energy, as in the case of undamped harmonic oscillator. However, the physics 

embodied in Eq. (3.8) can be, as we said, saved by statistics, for the action 

integral can still be construed as a time average of the difference between the 

two well-defined mechanical energies, but on this occasion for different 

probabilistic measure of the time domain. 

Indeed the exponential factor from the integrand of (3.8) can be 

interpreted as an exponential distribution density describing the ensemble of 

time sequences inside the time interval between the moments t0 and t1. In the 

case of undamped harmonic oscillator, the action is A0(t0,t1) – the index 0 of the 

action is referring to the value of the damping coefficient – and the exponential 

factor is 1. This particular action can be, indeed, interpreted as a mean over a 

uniform distribution of times in a sequence, as stated before. The difference 

between the two cases – zero and nonzero damping coefficient – rests only upon 

the exponential factor in expression of the action integral, which, from a 

statistical point of view, is thus not an attribute of the oscillator per se, but of 

the time domain, in its stance as a measured sequence. One can say that an 

evolution for the damped harmonic oscillator means an ensemble of events 

characterized by sequences of equally probable times in a certain time interval, 

just like in the undamped case. However, the „equally probable‟ attribute in a 

time sequence is now defined not by a uniform probability distribution, as in the 

case of undamped oscillator, but by an exponential distribution proper. 

In this context, the Eq. (3.2) has a precise statistical meaning, as we 

anounced before. Indeed, if we write it in the form 
 

 
 

 (3.9) 

 

then the statistical character of the frequency of undamped harmonic oscillator 

becomes apparent. At least in the case of the phase like that from Eq. (3.3), the 

undamped frequency can be regarded as a standard deviation of a quadratic 

variance distribution function of the type involved in the statistics that led to the 

initial Planck quantization [see (Morris, 1982) for the statistical theoretical 

concept]. One can therefore say that the instantaneous frequency of a recorded 

signal is indeed connected to a statistic of the time sequences revealed with a 

local harmonic oscillator with time-variable physical parameters in the sense of 

Caldirola-Kanai Hamiltonian theory. 
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3.2. The Necessity of Space and Time Scale 

 

Thus, at least for the case of damped harmonic oscillator, the physical 

character of time is, first and foremost, plainly a statistical property. This 

property is the one that allowed Richard Feynman the construction of his sum 

over paths, to begin with. It explains why Feynman has placed so much physical 

emphasis upon harmonic oscillator. In hindsight, this emphasis cannot be 

explained but only by taking into consideration the results of Berry and Klein 

regarding the forces of Newtonian type (Berry and Klein, 1984). According to 

these results, the presence of oscillators at a certain space scale is indicative of 

the existence of Newtonian forces – the only scale invariant forces in a physical 

system existing on different space scales. In order to better illustrate the issue at 

hand, we extract a couple of phrases from the Abstract – giving the customary 

short presentation of this kind of works – of the Feynman‟s 1942 famous 

dissertation. This excerpt contains an observation explaining the importance that 

the approach of the wave mechanics initiated in that work, bestows upon 

harmonic oscillator: 
 

As a special problem, because of its application to electrodynamics, 

and because the results serve as a confirmation of the proposed 

generalization, the interaction of two systems through the agency of an 

intermediate harmonic oscillator is discussed in detail. It is shown that in 

quantum mechanics, just as in classical mechanics, under certain 

circumstances the oscillator can be completely eliminated, its place being 

taken by a direct, but, in general, not instantaneous, interaction between 

the two systems [(Brown, 2005); our Italics]. 
 

There is not too much to say over these words, in order to see in them 

the future results of Berry and Klein, indeed: the oscillator is present in any 

conservative Hamiltonian approach whereby the time is specially defined under 

condition of invariance of Newtonian forces. Involving in its physical structure 

parameters from „two worlds‟, as it were – the far away part of the universe and 

the closest of its part – the oscillator is the best suited physical structure for 

describing the interaction between two systems. More importantly though, as 

we shall see here, this is the property that allows us to turn the special relativity 

into a universal theory, which thus can stay at the foundations of that special 

mathematics associated with the scale relativity physics. 

It is in order to make this statistical property of time into a physical 

property, that we need to exhibit the physical reasons for changing the time 

sequence statistics. This too, will help in a proper understanding of the 

explanation of the physical parameters of harmonic oscillator, inasmuch as the 

change of the time statistics seems to be, at least to a certain extent, intrinsic to 

the physical properties of the harmonic oscillator. Indeed, considering the 
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oscillator only, the Caldirola-Kanai Hamiltonian corresponding to the 

Lagrangian from Eq. (3.7) indicates, as we mentioned above, the variability 

with time of the physical parameters reflecting interactions with the remote and, 

respectively, close environment of the particle representing the oscillator as a 

physical structure: the inertial mass and the elastic stiffness. The case from Eq. 

(3.8) is only a particular one among those which led to the classical idea of 

gauging. Before anything should be said here, let us present a first instance of 

that classical idea of gauging, and its relation which the ideas of interpretation 

and memory. 

 
3.3. A First Gauging and a Definition of the Memory 

 

The equation of motion from the left hand side of (3.1) cannot be 

obtained quite directly from the variational principle applied to action (3.8), 

even after adjusting the statistics of time sequences to a genuinely exponential 

one: one still needs some definite conditions at the ends of the time interval. 

The first of these conditions, and the most important among them, is that the 

trajectories of motion must all end in the same position at the time ends, i.e. all 

pass through the same end points, spatially speaking: 
 

 
 

(3.10) 
 

Further on, the idea of cycle connected to the concept of harmonic oscillator, 

triggers the condition that the evolution starts and ends at the same point: 
 

 
 

(3.11) 

 

Moreover, if the situation is described in the phase plane of the 

harmonic oscillator, we need a condition like this for the velocities too. It is 

therefore a matter of problem setting, to decide which specific conditions we 

need to take at the ends of time interval, in order to apply them over the 

variational principle, in order to define it properly. However, conditions like 

(3.10) and (3.11), involving the ends of the time interval, or some variations 

thereof, are essential in any formulation of that principle. When we consider 

them, the Lagrangian proves not to be unique from the point of view of the 

variational principle: it is defined up to an additive function which represents an 

exact time derivative, and takes the same values at the ends of time interval. In 

order to show this, it is better to reason on a general Lagrangian, explicitly 

dependent on time, like in Eq. (3.7), but in a more general manner, and then, 

based on this treatment, to evaluate our case specific case given by Eq. (3.7). 

Let us therefore apply the variational principle in order to obtain the 

equation of motion for a Lagrangian of the functional form L(q,dq/dt,t). The 

physical action is given as the definite integral: 
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The principle of stationary action – the Hamilton principle – shows that 

for the real motion, the variation of this action, taken into consideration the 

conditions (3.10) must vanish. Thereby equations of motion are obtained, as 

Euler-Lagrange equations corresponding to the given Lagrangian. 

Notice, however, that in order to get the Euler-Lagrange equation we 

need the assumption that the Lagrangian has equal values at the end times of the 

motion, otherwise a redundant term would remain in the variation, which would 

allow in no condition to extract those equations. As a consequence, in the very 

same working conditions we can add to the Lagrangian any function of time just 

as well, provided it has equal values at the ends of time interval: our equations 

of motion do not change. In other words, within our working conditions, the 

Lagrangian is defined up to an additive function of time, which is the time 

derivative of a function having equal values at the ends of the time interval, but 

otherwise arbitrary. 

This is the basis of a well-known, and very instructive, classical 

gauging procedure. However we read it here a little bit differently, having in 

mind the idea of time sequence as discussed above: we can reduce the 

Lagrangian to a perfect square, by gauging it in the manner just described, and 

this reduction has a significant meaning. The procedure is well known and 

largely exploited in the control theory (Zelikin, 2000), so that we can shorten 

the story. The cycling condition (3.11) now enters the play. All one needs is to 

add to the Lagrangian from Eq. (3.7) the term representing an exact derivative: 
 

 
 

 

 

where w(t) is a continuous function of time, and then ask that the final 

Lagrangian should be a perfect square. In view of condition (3.11), the final 

equations of motion do not change. Now, the new Lagrangian of the gauged 

harmonic oscillator, proves to be a perfect square, just like the classical kinetic 

energy that generated idea in the first place: 
 

 
 

(3.12) 

 

provided w(t) satisfies the following Riccati equation: 
 

 
 

(3.13) 
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Obviously, under this condition, the Lagrangian (3.12) leads to the same 

equation of motion as Lagrangian from Eq. (3.7), if we use the condition (3.13) 

in the results of the corresponding variational problem. However, as we just 

said, the Lagrangian (3.12) has the property of the classical prototype of the 

Lagrangians – the kinetic energy of a free particle – of being a perfect square. It 

describes a „free particle‟ with its mass exponentially variable in time and the 

velocity redefined appropriately. 

What is the reason of this reading? Again, the point here is to physically 

interpret – with the interpretation defined in the sense of Charles Galton Darwin 

– a simple system like the harmonic oscillator. This task usually entails some 

allegedly fundamental interactions in its physical structure, in order to carry the 

interpretation over to an ensemble. Naturally, first we need the constitutive 

element of this interpretative ensemble, which is the harmonic oscillator. 

However, this comes with strings attached, in the form the interactions involved 

in the explanation of its parameters. The mass is here inertial and physics 

assigns to it an interaction involving the remote part of the universe. The elastic 

stiffness is of a deformational nature, and the physics associates with it the 

close part of the universe representing a static environment, like any 

deformation ever, since Robert Hooke. The damping term would then represent 

a transition between the physical properties of the oscillator induced by the two 

parts of the universe. According to our previous analysis, this property is 

delegated to the statistical properties of the time sequences, which is quite 

natural, inasmuch as the oscillator properties are induced by the universe, and 

the time sequences in a universe are cosmologically decided. 

It is according to this view, that the problem of interpretation needs to 

be solved, and the Lagrangian from Eq. (3.12) provides such a solution: it 

allows us to identify the harmonic oscillator with a free particle. The velocity of 

this particle is dq/dt+(w/M)q, depending linearly on the solutions of Riccati Eq. 

(3.13). Then, it is this last equation that needs a sound interpretation, which 

turns out to be statistical:  is the variance function of an exponential family of 

distributions having quadratic variance function, for which w is the mean 

(Morris, 1982). The probability distributions of this ensemble vary in time, but 

now the time itself represents a parameter indexing the family of probability 

densities, in much the same manner the temperature marks an ensemble of 

molecules in thermal equilibrium. Mention should be made that even an 

undamped oscillator can be nontrivially made this way into a free particle. But 

there is more to it, mostly along the idea of holography. 

 
3.4. The Holographic Time 

 

As we have shown in Chapter 2 here, the holography must be a natural 

property of the world we live in, just like the reflection, refraction and 

diffraction of light. Actually this is the spirit of the initial work of Dennis Gabor 
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that started the idea of holography (Gabor, 1948). It was precisely directed to 

the poor description of the phenomenon of difraction, more to the point, to its 

inappropriate connection with the other two phenomena relating to the general 

classical wave theory: reflection and refraction. To wit, the operation of 

electronic devices is obviously based on diffraction. These devices admit, 

through their objectives, a certain amount of improvement for the image that 

goes through them. Optimizing the images means reducing in aberation, and in 

most of the cases this becomes an impossible task: there is an inherent limit of 

technological possibilities. Dennis Gabor noticed, however, that this approach is 

unnecessary. Quoting: 
 

The new microscopic principle described below offers a way around 

this difficulty, as it allows one to dispense altogether with electron 

objectives. Micrographs are obtained in a two-step process, by electronic 

analysis, followed by optical synthesis, as in Sir Lawrence Bragg‟s „X-ray 

microscope‟. But while the „X-ray microscope‟ is applicable only in very 

special cases, where the phases are known beforehand, the new principle 

provides a complete record of amplitudes and phases in one diagram, and 

is applicable to a general class of objects (Gabor, 1948). 
 

A few more words are necessary in order to properly understand this 

excerpt. Notice first that in the association wave-particle here, the electrons of 

the electronic microscope device are supposed to correspond to electromagnetic 

waves of X-ray type, for which the difraction pattern is connected with the 

presence of matter – atoms, specifically – in periodic crystals (Gabor, 1949). 

Remember that in the case of light, such diffraction patterns are obtained when 

passing the light through pinholes – i.e. to the absence of matter – and the 

question is raised: what is the connection between the two physical situations? 

For, in view of the wave-corpuscle duality, the two situations must be the same 

from a conceptual point of view. 

Now, Gabor took notice of the fact that the X-ray diffraction pattern for 

crystals can be explained by the change in phase in the reflected radiation 

waves, due to the interaction with the electromagnetic structure of the lattice 

atoms. Therefore, such a pattern can be explained by the presence of matter, 

which is certainly not the case for a pinhole. Here the case is, obviously, quite 

contrary: the matter should count as absent. Naturally, if the de Broglie duality 

is universal, then there should be a universal property of the wave, to reproduce 

the properties of matter even when this one is absent. Dennis Gabor assumed, 

and even proved experimentally, that the general case occurs, indeed, when we 

have a “complete record of amplitudes and phases in one diagram”, a condition 

missing for the particular arrays of atom in a crystal. In this last case it is only 

the amplitude of the signal that counts experimentally and, as Gabor himself 

observes, the emphasis is “somewhat unlucky”. Quoting: 
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It is customary to explain this by saying that the diffraction diagrams 

contain information on the intensities only, but not on the phases. The 

formulation is somewhat unlucky, as it suggests at once that since the 

phases are unobservables, this state of affairs must be accepted. In fact, 

not only that part of the phase which is unobservable drops out of 

conventional diffraction patterns, but also the part which corresponds to 

geometrical and optical properties of the object, and which in principle 

could be determined by comparison with a standard reference wave. It 

was this consideration which led me finally to the new method [(Gabor, 

1949), our emphasis]. 
 

The fact that phases contain no information in issues related to 

interpretation, was the hallmark of theoretical physics until the work of Yakir 

Aharonov and David Bohm, which stirred up the idea of connection between 

potential and phase in wave-mechanical problems (Aharonov and Bohm, 1959). 

In view of our presentation here, one should be entitled to say that the Gabor‟s 

principle is actually a proof, avant la lettre as it were, of the Aharonov-Bohm 

effect. As a matter of fact, a kind of general type of Aharonov-Bohm effect, 

according to which, given a right theoretical approach… 
 

One might therefore expect wave-optical phenomena to arise which 

are due to the presence of a magnetic field but not due to the magnetic 

field itself, i.e. which arise whilst the rays are in field-free regions only 

[(Ehrenberg and Siday, 1949); our Italics] 
 

has been voiced, partly based to Gabor‟s own previous work, just about the time 

when he introduced the idea of holography. We shall pursue here, in a genuine 

manner, is true, that difference mentioned by Ehrenberg and Siday, between the 

presence of charge and the action of the field it creates, which was the mark of 

Maxwellian electrodynamics from its very beginning. 

For the rest, we need to notice that the Gabor‟s target is „the 

conventional diffraction pattern‟, which is incomplete from the point of view of 

duality wave-corpuscle. The apparent proposal is that the phase should be 

observable in a hologram, which is just as natural as the diffraction 

phenomenon itself. The degree of generality of the holographic principle has 

been noticed by its author from the very beginning: 
 

The new principle can be applied in all cases where the coherent 

monochromatic radiation of sufficient intensity is available to produce a 

divergent diffraction pattern, with a relatively strong coherent 

background. While the application to electron microscopy promises the 

direct resolution of structures which are outside the range of ordinary 

electron microscopes, probably the most interesting feature of the new 

method for light-optical applications is the possibility of recording in one 
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photograph the data of three-dimensional objects. In the reconstruction, 

one plane after the other can be focused as if the object were in position, 

though the disturbing effect of the parts of the object outside the sharply 

focused plane is stronger in coherent light than in incoherent illumination. 

But it is very likely that in light optics, where beam splitters are 

available, methods can be found for providing the coherent background 

which will allow better separation of object planes, and more effective 

elimination of the effects of the ‘twin wave’ than simple arrangements 

which have been investigated [(Gabor, 1949), our emphasis]. 
 

The last italicized part was the main object of technological 

development in the last times. However, the universality of this principle begs 

the question: what is the relevant property of waves that makes it work in the 

world at large? The answer was provided a long time ago by Hugh Christopher 

Longuet-Higgins, as a property of ensembles of damped harmonic oscillators, 

involving the Eq. (3.12) in a particular take (Longuet-Higgins, 1968). However, 

in order to properly understand such an answer we need, in fact, a proper view 

on the idea of scale invariance in the universe (Mazilu et al., 2019). 

We stop here for the moment being. The previous elaboration 

reproduces the gist of a statistics involving the transition between kinetic and 

potential energies as illustrated by the case of harmonic oscillator. As it turns 

out, this is an old problem involved in the very dynamics of the harmonic 

oscillator, which was the first physical system to raise doubts on the issue of 

sufficiency related to the definition of the absolute temperature. Thus, it further 

turns out that the Planck‟s quantization is by and large not the only lesson we 

need to learn from this moment of our knowledge. Most importantly, we should 

say, is the fact that we need to account for the very structure of the constitutive 

element of the ensemble serving for interpretation, as defined for the necessities 

of the wave mechanics. However, before going any further along this line, it 

should be worth settling an important idea for the future development. 

 
4. Conclusions 

 

In this first part of the work we propose here, a few tasks of selection 

and adjusting the physical models necessary in explaining the physics of brain 

are accomplished. The general reason and, as such, the principle of selection is 

that of interpretation, that led to modern quantum physics. The neurons are thus 

to be modeled as light rays, but the physical light rays need to be understood 

and explained themselves in a proper way. As it turns out, this way includes the 

holography as a natural phenomenon connected to light. We describe it 

theoretically by Schrödinger equation, and thereby we get the suggestion of how 

the brain can be explained as a hologram, an old idea in the brain 

phenomenology. 
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PRINCIPII FIZICE ÎN EVIDENȚIEREA MECANISMELOR DE 

FUNCȚIONARE A CREIERULUI. PARTEA I 

 

(Rezumat) 

 

Lucrarea se adresează unei comunități largi de cercetători ce abordează creierul 

uman din diverse puncte de vedere. Ideea noastră esențială este că indiferent de punctul 

de vedere al abordării în cercetarea creierului, un cercetător trebuie să înțeleagă 

posibilitatea fizică de operare a acestuia. În lucrarea de față descriem această 

posibilitate, modelând creierul ca pe lumină. Proprietatea fizică esențială este 

fractalitatea. Ea va fi explicată, mai întâi pentru lumina însăși, apoi aplicată ca atare la 

cazul creierului. Funcțiile esențiale ale creierului: memoria, achiziția de informație și 

manipularea acestei informații, vor fi explicate ca fenomene fractale în tranziții de scală. 

Modelul fizic astfel construit este, într-adevăr, util în ghidarea oricărei cercetări asupra 

creierului, indiferent de natura sa. 
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